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Uncertainty Estimation of Precipitation 
Covariance Functions and its Effect on Dis-
charge Simulation using Random Mixing 
 
The covariance or the spatial correlation function plays a vital role in the Random 
Mixing technique for precipitation simulation, the uncertainties of the covariance func-
tion is assessed in this study, The Study was performed on the upper Neckar catch-
ment, located in southwest Germany, specifically in the sub-catchment Horb, the 
catchment’s rainfall data were collected through rain gauge observations for a period 
of 15 years (2001 to 2015).Multiple covariance functions were fitted for the same data 
set, then the precipitation was simulated using Random Mixing, the data is then used 
as input for the Hydrologiska Byrans Vattenbalansavdelning (HBV) model that is cali-
brated using differential evolution The input data is created using a mix of external 
drift kriging and IDW. 
 
The results of this study demonstrate that using multiple covariance functions with 
the same dataset can be helpful in estimating the discharge flow, the simulated val-
ues matched and even exceeded the recorded values, since this method doesn’t un-
derestimate the precipitation as much as other interpolation methods, however, the 
covariance function can cause a relatively high degree of error when used with low 
precipitation dates, and using multiple covariance functions for a big dataset requires 
more computation time and power. 
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Chapter 1

Introduction

1.1 Hydrological Modeling

According to Devia et al. (2015), a Hydrological model is a simplified representation

of real world system which provides results as close to reality as possible by using a

set of equations that help in the estimation of runoff as a function of other watershed

parameters.

The two most important inputs that are required for a hydrological model are

precipitation data, temperature data, and drainage area. Along with these are other

watershed characteristics like vegetation, temperature, and evapo-transpiration rates,

topography, soil moisture content, characteristics of ground water aquifer are also

considered.

Throughout the years, a large number of hydrological models that ranges from small

catchment models up to global models have been developed, these models are mainly

used for predicting system behaviour and understanding various hydrological processes.

There are many advantages of using Hydrological models, these models help in flood

forecasting, proper water resource management and evaluation of water quality, erosion

and sedimentation, nutrient and pesticide circulation, land use and climate change etc.

but there are also some drawbacks to using these models, like lack of user friendliness,

large data requirements, absence of clear statements of their limitations (Devia et al.,

2015)

1



1.1. HYDROLOGICAL MODELING

1.1.1 Why Modeling?

There are many reasons as to why one would need to model hydrological processes, and

due to the complexity of real world hydrological systems, our hydrological measurement

techniques are very limited, therefore a more sophisticated method of extrapolation of

information from those measurements are needed, particularly in catchments where

measurements are either unavailable or inaccurate, or to assess the impact of future

hydrological changes where measurements are impossible.

Generally, hydrological models are used for research purposes to formulate knowledge

about hydrological systems in the real world, (Beven, 2012) argues that we learn most

when a model or theory is shown to be in conflict with reliable data so that some

modification of the understanding on which the model is based must be sought. and

that due to increasing global demands on water resources, the ultimate aim of prediction

using models must be to improve the decision making process about a hydrological

problem.

1.1.2 Types of Models

according to (Devia et al., 2015), Hydrological Models can be classified as either event

based or continuous, where event based models can only produce outputs for a specific

time period.

The aforementioned models can also be sub-classified as lumped or distributed models,

where lumped models treats the entire basin as a single unit without any regard to

spatial variability, while distributed models divides the catchment or basin into cells or

polygons so the parameters can vary spatially.

These models can also be sub-sub-classified as stochastic and deterministic models,

where deterministic models will generate the same output for a single set of inputs,

while stochastic models can generate different values of output from a single set of

inputs.

Some of the most important classifications are empirical model, conceptual models and

physically based models.

2



CHAPTER 1. INTRODUCTION

Empirical models

Empirical models are observation oriented models and represent real systems with

mathematical explanation derived from input and output time series without any

consideration to the physical processes of the catchment, hence, the models are called

data driven models. Empirical models are only valid within the boundaries of the

catchment (Devia et al., 2015).

Empirical models use non-linear statistical relationships between inputs and outputs,

Unit Hydrograph is an example of this method. The general equation for the empirical

models is a function of inputs:

Q = f (x) (1.1)

where:

- Q: runoff output

- x: input datasets of rainfall and historic runoff.

The function used to transform rainfall to runoff is either an unknown procedure (as in

machine learning) or without any reference to the physical processes.

Empirical models are best used when other outputs are not needed, also due to lack of

information about un-gauged watersheds, in many cases, empirical models can provide

accurate simulations including long time steps and recreating past run-off values (EPA,

2017)

Conceptual models

Conceptual models connect simplified components of hydrological processes, it consists

of a number of connected reservoirs to provide a conceptual idea of the catchments

behaviour.

Conceptual models represent the water balance equation with the conversion of rainfall

to runoff, evapotranspiration, and groundwater. Each component in the water balance

equation is estimated by mathematical equations that distributes the precipitation input

data. The general governing equations for conceptual models are versions of the water

3



1.1. HYDROLOGICAL MODELING

balance equation which control surface water and storage fluctuations shown below :

(EPA, 2017).

dS
dt

= P− ET −Qs ± GW (1.2)

Conceptual rainfall-runoff models are mostly used for resource planning, and the models

can vary in complexity, but conceptual they provide good estimates of flows in gauged

and un-gauged catchments provided that the needed data is available (eWater CRC, 2011)

Physically based models

This is a mathematically idealized representation of the real phenomenon. These are

also called mechanistic models, they are based on the physics related to hydrological

processes. physically based models are used to represent real hydrological responses in

the catchment (Devia et al., 2015).

Many physics laws are used in this model, these include: water balance equations,

conservation of mass and energy, momentum, and kinematics, St. Venant, Boussinesq’s,

Darcy and Richard’s...etc. Therefore, the models require a huge amount of data to be

available, such as: Soil moisture content, initial water depth, topography, topology,

dimensions of river network etc. (EPA, 2017).

Physically based models can provide more information (even outside the boundary) than

the two other models due to the paramaters having physical interpretation, and can also

be applied to a wide range of situations. (example: SHE / MIKE SHE model).

4



CHAPTER 1. INTRODUCTION

1.2 Motivation

“ The future in rainfall–runoff modelling is therefore one of uncertainty: but this then

implies a further question as to how best to constrain that uncertainty. The obvious

answer is by conditioning on data, making special measurements where time, money

and the importance of a particular application allow. (Beven, 2012)”

Due to the complexity of hydrological systems, all models of these systems are prone to

a certain degree of uncertainty, these uncertainties can arise from:

1. Input uncertainty

2. Parameter uncertainty

3. Conceptual uncertainty

input uncertainties can be caused by: the density of measurements, transmission errors,

temporal resolution errors, as well as precipitation which is one of the main sources of

input uncertainty in hydrological modelling.

there are many different factors that contributes to parameter uncertainties, a few

examples:

• the degree of spatial differentiation of the investigated area

• the chosen parameter estimation approach

• the applied calibration procedure

• the type and number of verification points

while conceptual uncertainties are generally caused by the modeller himself, mainly

due to the lack of information regarding the catchment or basin, or even the approach

chosen by the modeller for process description. (Pluntke et al., 2014)

With the introduction of digital computer models, and the use of more complex spatial

analysis methods, the spatial correlation or the covariance function emerged as one of

the major sources of uncertainty, this is due to the fact that the covariance function gives

the statistical correlation between random variables depending on the spatial distance

between those variables, the following chapters the uncertainties introduced by the

covariance function and the effects of said uncertainties on the rainfall run-off models

are investigated.

5



1.3. SCOPE AND STRUCTURE OF THIS THESIS

1.3 Scope and structure of this thesis

This thesis is based on the techniques and methods described in Bárdossy and Li (2008),

and Hörning (2016), Chapter 1 introduces the basics of hydrological modelling, while

Chapter 2 discusses the basic methods and interpolation methods used to prepare the

input data for Random mixing.

Chapter 3 describes the methodology of the work, the data selection process, grid

sampling, and the kernel density estimation method, as well as the the variogram fitting

process and the discharge simulation. The results of the simulations are analysed and

discussed in Chapter 4

6



Chapter 2

Literature Review

2.1 HBV Model

The HBV model is a semi distributed conceptual model where catchments are divided

into sub-basins as primary hydrological units, and within these an area-elevation

distribution and a crude classification of land use (forest, open, lakes) are made.

The model explained in detail in (Bergström, 1992) uses daily and monthly precipitation

data, evaporation and air temperature. the latter is used to calculate snow accumulation.

If potential evaporation data are lacking, monthly evaporation estimates based on,

forinstance, the Thornthwaite equation can be used (Rusli et al., 2015).

The snow, snow-melt, and snow accumulation are calculated by a degree-day method,

while the groundwater recharge and evaporation are calculated as a function of actual

water storage, and runoff is calculated as a function of water storage. Precipitation

in HBV is modelled as either snow or rain depending on the temperature threshold

TT, snowfall is multiplied by a correction factor CSF to compensate for errors in

measurements and evaporation, while snow-melt MELT is calculated using the

degree-day factor (see equation 2.1).

MELT = CMELT.(T(t)− TT) (2.1)

where:

• MELT = snow-melt (mm/day)

7



2.1. HBV MODEL

• CMELT = degree day factor (mm/C.day)

• TT = Threshold temperature (C)

The second routine of the HBV model is the soil moisture or evapo-transpiration

routine, which computes an index of wetness for the basin and integrates interception

and soil moisture storage which is controlled by 3 parameters, the first parameter

FC is the maximum soil moisture storage, and the relative contribution to runoff from

precipitation or snow melt at a given soil moisture deficit is controlled by parameter Beta,

while parameter LP controls the potential evaporation curve and the evapo-transpiration

rates.

the soil moisture routine uses a correction factor to account for temperature anomalies

as shown in equation 2.2

PEA = (1 + C.(T − TM)).PEM (2.2)

where:

• PEA = adjusted potential evapo-transpiration

• C = empirical model parameter

• T = daily mean air temperature

• TM = monthly long term average temperature

• PEM = monthly long term average potential evapo-transpiration

The final routine is a runoff response routine which transforms excess water (δQ) from

the soil moisture routine to discharge it in each sub-basin, the model consists of 2

reservoirs, three recession parameters, K0, K1, K2, Threshold L, Percolation rate, and

a triangular filter (see equations 2.3 2.4 2.5 2.6)

Q0 = K0(S1 − L1) (2.3)

Q1 = K1S1 (2.4)

Q2 = K2S2 (2.5)

8



CHAPTER 2. LITERATURE REVIEW

Q = T(Q0 + Q1 + Q2) (2.6)

Although the HBV model was developed in Europe, it has also produced relatively

accurate results in different climatic conditions. There are several other strengths of the

HBV model, its physically based parameters, which are useful due to the simplicity

of linking them to physical attributes; the unexcessive number of free parameters as

compared with other models (the HBV model has only eight parameters, while the

Sacramento model, Xinanjiang model, NedbØr-AfstrØmnings (NAM) model, and

Pitman model have 21, 15, 15, and 16 parameters, respectively, simple data demands;

user-friendliness; ease of operation; and high level of performance (Rusli et al., 2015)

2.2 Inverse distance weighting

Inverse distance weighting (IDW) is a widely used deterministic method, it is based

on Tobler’s first law “everything is related to everything else, but near things are more

related than distant things”, and it applies to geographical space for interpolation. in

hydrology, it means that the attribute value of an ungauged site is the weighted average

of the known attribute values within the neighbourhood, and weights are associated

with the horizontal distances between the gauged and un-gauged sites (Waseem et al.,

2016)

Due to the IDW being a univariate method with only the horizontal distance as an

influence factor, there are some drawbacks associated with the performance of this

method, the main drawback being that a direct application of the interpolation method

in geographical space might cause unrealistic results.

Another use for IDW is in GIS software packages, it is based on the assumption that

the attribute value of an unsampled point is the weighted average of the known values

within the neighborhood. The method involves the process of assigning values to

unknown points using values from a scattered set of known points. The value of an

unknown point is a weighted sum of the values of the known points.

Waseem et al. (2016) explains that from a hydrological point of view, if m source sites

(i.e., known points) transfer information to an unknown point (i.e., ungauged site), the

9



2.2. INVERSE DISTANCE WEIGHTING

required streamflow value at the ungauged site can be computed as the weighted average

of the estimates of the m source sites. The computation of the required streamflow value

for an ungauged site can be obtained using the IDW equations as follows:

QP(x) =
m

∑
k=1

wk

∑m
k=1 wk

QP(wk) (2.7)

wk =
1

(DIDW(x,xk
)C (2.8)

DIDW(x,xk
= dDWS =

√
(xk − x)2 + (yk − y)2 (2.9)

• DIDW(x,xk)
: distance between two sites.

• IDW subscript in DIDW(x,xk)
: the method used.

• dDWS: is the distance based on the geographical distance weighted scheme DWS.

• Qp(x): the hydrological variable at the ungagued site located at point (x,y).

• Qp(xk): the hydrological variable at the neighboring donor site k at point (xk, yk) in

the region.

• m: the total number of donor site.

• c the power parameter.

• wk the interpolation weight assigned to the kth donor site.

10
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2.3 External Drift Kriging

External drift kriging is a case of normal kriging which allows the prediction of the

variable Z (known only partially in the study area) modelled with a random function

Z(x) through a deterministic variable S(x) where variable s is known in that area, with

the assumptions:

• The two quantities Z and S are assumed to be linearly related

• Z(x) on avaerage is equal to s(b) up to a constant a0 and a coefficient b1

E[Z(x)] = a0 + b1s(x) (2.10)

the function s(x) provides a finer detail than the sample spacing of Z(x), and the

predictor is a linear combination of the sample values at location xi(i = 1, ..., n) with

unit sum weight wi

Z∗(x0) =
n

∑
i=1

wiZ(xi) (2.11)

where:
n

∑
i=1

wi = 1

it is also assumed that the expectation of the predictor is zero so that

E[Z(x0)] = E[Z∗(x0)] (2.12)

then the equality can be:

E[Z∗(x0)] =
n

∑
i=1

wiE[Z(xi)] = a0 + b1s(x0) (2.13)

which means that the weights should be constant with the interpolation of s(x)

s(x0) =
n

∑
i=1

wis(xi) (2.14)

the function O is minimised

O = σ2
E − µ1(

n

∑
i=1

wi − 1)− µ2(
n

∑
i=1

wis(xi)− s(x0)) (2.15)

11



2.3. EXTERNAL DRIFT KRIGING

where the prediction variance σ2
E:

σ2
E = var[Z∗ − Z] =

n

∑
i=1

n

∑
j=1

wiwjC(xi − xj)− n
n

∑
i=1

wiC(xi − x0) + C(0) (2.16)

where C is the Covariance function

The partial derivatives of the function O(wi, µ1, µ2) is set to zero to find the minimum

and the kriging equations are:
∑n

j=1 wjC(xi − xj)− µ1 − µ2s(xi) = C(xi − x0) f ori = 1, 2, ..., n

∑n
j=1 wj = 1

∑n
j=1 wjs(xj) = s(x0)

with the prediction variance:

σ2
E = C(0)−

n

∑
i=1

wiC(xi − x0) + µ1 + µ2s(x0) (2.17)

The external drift kriging means incorporating additional conditions about one or more

drift variables si(x), i = 1..., M where the function si(x) must be known at all locations

xi of Z(xi)

this method can only be applied when the two variables are linearly related, and the

function should be used to transform the data of the auxiliary variable which can then

be used as an external drift (Bourennane et al., 2000).

12
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2.4 Random Mixing

Random mixing is a copula based simulation approach first introduced in Bárdossy

and Hörning (2016) which is an extension of Gradual deformation by (Hu 2000), where

spatial fields are generated from a linear combination of independent random fields,

where weights are selected to satisfy the required linear constraints, then an infinite

number of solutions are generated inside a vector space, where non linear constraints

can be incorporated via optimization.

2.4.1 Simulating daily precipitation with Random Mixing

Hörning (2016) investigated the use of Random mixing for daily precipitation simulation

in a high spatial resolution in order to assess the uncertainty of rainfall runoff simulations

for a time period of 62 years in the upper Neckar catchment in south-west Germany, and

used a distribution of precipitation amounts Ftj(z) as shown below:

Ftj(z) =


p0 z = 0

p0 + (1− exp(−λz)) 0 < z ≤ L

pL + (1− PL)Gtj(z) L < z

where:

• Ftj(z) : the daily distribution of precipitation amount

• p0 : the discrete probability of zero

• p0 + (1− exp(−λz)) : exponentially distributed precipitation amount for the wet

days with precipitation amounts below a selected threshold L

• pL + (1 − PL)Gtj(z) : distribution of the precipitation amounts exceeding the

threshold L

Hörning (2016) explains that there are several reasons for splitting the function into

three parts, first, the probability of 0 precipitation has to be treated separately, second,

the precipitation amounts (lower than the threshold L are very frequent and they

area measured with a relatively high degree of observation errors, they can distort

the estimation of the whole distribution and must be treated separately, lastly, the

13



2.4. RANDOM MIXING

precipitation amounts above the threshold L have skewed distributions, hence, they have

to be treated separately as well.

in conclusion, Hörning (2016) discovered that Random mixing provides a reasonable

representation of the uncertainty in daily precipitation simulation since 84% of the

investigated days were not rejected by a Kolmogorov-Smirnov test on the 90% level,

which is acceptable, however, it was pointed out that this procedure can only be

performed on wet days since the probability of zero observations cannot be identified.

2.4.2 Using Random Mixing with incomplete records

Hörning (2016) also shows that random mixing can be used in situations where

observation records are incomplete, or suffer from a high degree of inaccuracy, the

standard approach is to remove the affected stations, but random mixing is believed

to provide a solution for this problem, and in order to prove this theory, an experiment

was conducted where 311 precipitation stations in the state of Baden-Württemberg were

selected, and 30 of those stations were randomly selected, and 5 days of precipitation

data were removed, and 500 conditional simulations are performed as follows:

• first, monthly precipitation is calculated using daily values.

• the spatial field must be transformed to a multi-normal field Z prior to the Random

Mixing procedure using the equation:

Z(s) = φ−1(F(W(s))) (2.18)

where:

– F(W): the univariate marginal distribution of the field W applied for each

location s

– φ−1: the inverse univariate. standard normal distribution

• the spatial correlation function of the normalized values is estimated using the

modified maximum likelihood method described in more detail in section 3.4

• the simulations are then performed and the values are back transformed into

precipitation.

14
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• the mean of the simulations can be considered as interpolated monthly

precipitation.

Hörning (2016) created a second model based on the common approach (by removing

the stations with missing data entirely) and compared it to the results of the above

simulations and also to the results of the original data, and it was shown that the

simulation model has more similarities to the original model than the model with the

omitted stations, hence proving that random mixing is a valuable tool when simulating

catchments with missing or inaccurate data.

2.5 The Covariance Function

The estimation of the covariance function using a modified maximum likelihood method

which is based on spatial copulas was first introduced in Bárdossy (2011) where it was

used to spatially interpolate observation values with concentrations below the sensitivity

of measuring devices.

The method can be viewed in detail in Bárdossy (2011), however, the covariance function

estimation equations are summarized below:

L(β) = ∏
(j,k)∈I1

φ2

(
yj, yk, R(hj,k, β)

)
∏

(j,k)∈I2

Φ1

(
yd

j − ykR(hj,k, β), β)√
1− R(hj,k, β)2

)
∏

(j,k)∈I3

Φ2

(
yd

j , yd
k , R(hj,k, β)

)
(2.19)

where:

• R(hj,k, ..) comes from the correlation matrix Γ:

Γ =
(
(ρi,j)

n,n
l,l

)
where ρi,j depends on the vector h separating the points xi and xj:

ρij = R(xi − xj) = R(hi,j)

• R(.., β): the correlation function is assumed to have a parametric form with the

parameter vector β
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2.5. THE COVARIANCE FUNCTION

• yk, yd
j : the observed values transformed to the standard normal distribution using:

yk = Φ−1
1 (G(z(xk))) k = 1, ..., nz

yd
j = Φ−1

1 (G(d(xj))) j = 1, ..., nd

• Φ1: the distribution function of the standard normal distribution N(0,1).

• Φ2(x, y, r): the distribution function of the 2 dimensional normal distribution with

correlation r and standard normal marginal distribution N(0,1).

• φ2(x, y, r) is the density function of Φ2

• I1: a set that contains pairs of locations with both variables (j,k) from measured

values.

• I2 a set that contains pairs of one measured ppt value and one non-detect value.

• I3 a set that contains pairs of both non-detect values.

Bárdossy (2011) used this method to interpolate groundwater quality parameters with

values below the detection limit, or non detects as described in the paper, and compared

it with the more commonly used methods of interpolation such as ordinary kriging

and indicator kriging and found that the copula based interpolation is exact at the

observation locations since the interpolated value was equal to the observed value, and

that it outperformed the other interpolation methods, where non-detect values were set

to below the detection limit, equal to the detection limit, or zero, where both methods

lead to systematic errors.
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Chapter 3

Methodology

Simulating precipitation using random mixing is a multi-step process that starts by

selecting the data, then the data is adapted to a map, distributions are fitted to the

input data, random mixing process is then executed and the results are then modelled in

HBV, the steps in this chapter were performed using python scripts that were collected

from Anwar (2016) and Hörning (2016), the scripts were to meet the requirements of this

thesis, and the results are mentioned in Chapter 4

3.1 Data Selection

The Study was performed on the upper Neckar catchment, located in southwest germany,

specifically in the subcatchment horb (see figure 3.1), with a mean elevation of 550

m.a.s.l., a long term average daily temperature of 8.1 (Co), and an annual precipitation of

approximately 908 mm, the area of the subcatchment is 420.18 km2.

The catchment rainfall data were collected through rain gauge observations for a period

of 15 years (2001 to 2015) , Station numbers, date and time, and the precipitation values

were extracted from its original files along with their coordinates.

3.2 Grid Sampling

In grid sampling the catchment is divided into cells and only one station in the cell is

selected, which is usually the station closest to the centre of this cell, and if other stations

are present in the cell, it is selected as a validation station so that it would minimise the

uncertainties in the simulation as much as possible.
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3.3. KDE FITTING

Figure 3.1: Subcatchment Horb in the upper Neckar catchment

Data such as precipitation and temperature from measuring stations are usually

represented by a single point on the map, the data can be considered constant within

the cell, however, cell size can vary from model to model, a larger celled model may

experience significant and abrupt changes in properties between cells.

In this work, the catchment shape file was processed with GDAL Python API, and it was

divided into cells of approximately 2 kilometres, and a maximum cell threshold of 0.9 is

assigned (where a station farther from the centre are not considered for grid sampling),

a coordinates matrix is then created with the threshold distance adapted into the model

and is used to either include or exclude stations in grid sampling.

3.3 KDE Fitting

KDE fitting or Kernal density estimation, is a method of estimations of curves, a

technique to estimate the unknown probability distribution of a random variable,

based on a sample of points taken from that distribution. The target is estimating the

probability density function of the variable using kernels, hence the name. it is also used

in statistical applications to show the basic properties of a dataset such as skewness,

dispersion...etc.
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CHAPTER 3. METHODOLOGY

the general equation for the kernal density estimation is:

fn(x) =
1

nh

n

∑
i=1

K(
x− Xi

h
) (3.1)

where:

• f : a probability density function

• K: the kernel (or the chosen density function)

• h: the smoothing parameter (bandwidth)

• n: the total sample size

however, before going through with the kernal density estimation, it is important to

remember the distribution of precipitation amounts equation mentioned in section 2.4.1,

where precipitation is divided into 3 different parts, one distribution for the discreet

probabilty of zero, a second distribution for precipitation below the selected threshold,

and the last distribution for precipitation amounts exceeding the threshold.

the KDE method used in this case was the multivariate KDE method from the statsmodel

API in python, the multivariate KDE differs slightly from equation 3.1 and is explained

in more detail in Gramacki (2018)

In this step, since we are only interested in days with high precipitation values,

a minimum precipitation threshold value is introduced and a list of dates with

precipitation below the threshold value which are not used for Random Mixing is

generated, the values for those dates are taken from a previously interpolated values

using kriging with external drift, and if those values were not available then they are

taken from IDWs interpolations.

3.4 Variogram fitting

The covariance function (or the spatial correlation function) is estimated using the

modified maximum likelihood method detailed in Bárdossy (2011), The method is based

on spatial copulas, the marginal distributions of parameters is first estimated using a

mixed maximum likelihood approach, then the parameters of spatial dependence are
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3.4. VARIOGRAM FITTING

estimated using the maximum likelihood estimation method

Precipitation data are usually highly skewed due to the high presence of 0 precipitation

days (or non-detects) or precipitation with very low values (below the threshold),

which makes their interpolation difficult for hydrologists, and often lead to problems

with covariance function estimation, these effects can usually be reduced by data

transformations, however, sometimes these transformations cannot be used in a

straightforward manner, and the empirical distribution function of observations must be

calculated, however, sometimes the mean and standard deviation cannot be calculated

directly and the estimation of parameters θ of a selected parametric distribution via

method of moments is not possible, and the maximum likelihood method is required.

(Bárdossy, 2011)

the main part in this step is identifying the spatial structure from the available data, in

cases with missing or inaccurate data, spatial structure identification can be difficult,

as it may cause a reduction in variance, neglecting the data on the other hand can lead

to an over estimation of the variance, which in turn leads to an underestimation of the

spatial dependence.

The uncertainties in this step come from the fact that the selected pairs for the sets

I1, I2, I3 are chosen randomly, so that every time the method is executed a different

covariance function will be generated, which could drastically alter the model outputs,

to demonstrate, a sample is selected as inputs for the modified maximum likelihood

method detailed in section 2.5 and the method was executed 10 times and produced the

covariance functions shown in table 3.2.

0.550276 1.414677 -1.38702 -0.22126 -1.56328 1.74E+00 1.29E+00 2.66E-01
0.569114 -0.19786 -0.21073 -0.05583 -1.03474 1.16E+00 1.27E+00 6.08E-01
0.913154 0.704211 0.101199 0.396723 -0.02546 8.10E-01 1.07E+00 4.95E-01
1.387913 1.172007 0.013695 -0.25453 -0.20782 2.24E+00 7.95E-01 8.11E-01
0.12916 0.567426 -0.20613 -1.13397 -0.94693 9.58E-01 8.69E-01 7.80E-01

0.869099 1.377639 -1.24891 0.655947 -0.52958 8.98E-01 1.54E+00 2.92E-01
-0.20284 1.580683 0.436823 -0.12494 -0.72897 1.88E+00 4.17E-01 -4.74E-01
0.357916 1.049939 0.268917 -0.25639 -1.24891 1.24E+00 1.39E+00 2.14E-01
1.096648 0.436918 0.336577 -0.39746 -0.12701 1.05E+00 1.61E+00 -2.62E-01
2.00531 0.706083 -1.56328 -0.43073 -1.24891 1.11E+00 1.88E+00 -2.96E-01

Table 3.1: Transformed Data Sample
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CHAPTER 3. METHODOLOGY

0.78890 Sph(34.59843)
0.54462 Exp(39.85648)
0.71240 Sph(31.59250)
0.49765 Sph(93.86109)
0.58260 Exp(37.31967)
0.77250 Sph(63.76907)
0.74940 Sph(49.80326)
0.76765 Sph(72.61200)
0.45713 Sph(51.91685)
0.70547 Sph(66.81781)

Table 3.2: Fitted Variograms

the above procedure is used to estimate the covariance function, and is executed multiple

times to estimate 20 different covariance functions for each day for a period of 15 years

(2000 - 2015), the covariance functions are then fitted.

3.5 Random mixing and HBV modeling

Up until this step, everything that has been done was to prepare the data for the random

mixing process, Random Mixing is based on linear combinations of unconditional

spatial random fields where the corresponding weights of the linear combination have

to be selected such that certain predefined linear constraints are fulfilled. It uses spatial

copulas as spatial random function; thus Gaussian as well as non-Gaussian spatial

dependence structures and arbitrary marginal distributions can be considered. where

unconditional fields are used to solve 10 conditional fields per covariance function per

day, which produces 200 realisations for each day for a period of 15 years, since it is a

lumped model, the realisations are converted into a single value and a time series of

those values is created.

The data from the time series are then looped into an HBV model that is calibrated with

external drift kriging data in order to simulate the discharge of station 411, the results of

those simulations are shown and discussed in chapter 4

It is also worth mentioning that a buffer distance of 20 km was introduced to the model

in order to include the stations that are adjacent to the catchment since they can have

significant effect on the outputs of this model.
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Chapter 4

Results and Discussion

As mentioned in section 1.2, all rainfall-runoff models are prone to a certain degree

of uncertainty, which in this case can either be input uncertainty from infilling, or

parameter uncertainty like the chosen covariance function, or conceptual uncertainty

like uncertainties in the chosen random fields, in this chapter, these uncertainties

are evaluated. the year 2007 was chosen as a case study year (see figure 4.1)

since precipitation events with varying intensities were observed, ranging from low

precipitation events (below 5mm) to high precipitation events (above 35mm).

Figure 4.1: Precipitation data for the year 2007
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4.1. UNCERTAINTIES IN RANDOM MIXING

4.1 Uncertainties in Random Mixing

In order to evaluate the uncertainties in Random Mixing, the data should be isolated as

much as possible from other sources of uncertainties, and due to the fact that a different

covariance function is fitted in each iteration, the realisations of each iteration must be

evaluated separately, in addition, low precipitation, and high precipitation events should

also be evaluated separately in order to further understand the behaviour of the random

fields under different circumstances.

4.1.1 Low Precipitation Events

Low precipitation events were observed throughout different times in the year 2007, the

lowest simulated event occurred on the 6th of March, 2007, all 20 iterations were analysed,

and while realisations may vary a little in each iteration, it was in iteration 3 where the

realisations were closer together with a difference of 0.49mm between the maximum and

minimum realisation values (see figure 4.2) while the maximum difference in realisation

values occurred in Iteration 11 (see figure 4.3) with a difference of 1.7mm.

Figure 4.2: Realisations March 6, 2007 - Iteration 3
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Figure 4.3: Realisations for March 6, 2007 - Iteration 11

4.1.2 High Precipitation Events

The highest precipitation event in 2007 peaked on the 8th of May 2007, with precipitation

above 30mm, the data for all iterations were analysed, and iteration 20 that witnessed

the highest range in values with 12.75mm difference between the highest and lowest

realisation value, while the lowest difference in realisation values was observed in

iteration 7 with only 5.25mm

4.2 Uncertainties in the Covariance Function

The covariance functions or the spatial correlation functions cannot be directly compared

with each other, averaging the realisation and plotting them leads to a reduction in

variance and it does not provide much information, however, in figures 4.6, and 4.7 the

first realisation of each iteration is plotted and compared for both, the low precipitation

and the high precipitation events. While the CDFs for those dates are also shown in

figures 4.8 and 4.9.

When comparing figures 4.5 and 4.7, where realisations of one iteration and the first

realisation of each iteration are plotted respectively, it can be noticed that the plots are
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4.2. UNCERTAINTIES IN THE COVARIANCE FUNCTION

Figure 4.4: Realisations for May 8, 2017 - Iteration 07

very similar, with the only difference being that in the latter, the points are more or less

equally spaced while they look more random in the realisations plot, which proves that

a better method of comparison.

The cumulative distribution function figures 4.9 and 4.8 provides a more detailed view

on the realisations, in those figures, all realisations from all the iterations are plotted, and

upon examining the figures, it’s clear that the largest concentration of values are more

towards the centre of the plot (example: between 30 and 38 millimetres per day on the 8th

of may, and between 1.8 and 2.8 millimetres per day for the 6th of march) however, due to

the randomness of the covariance function, one could end up with higher concentration

of values above or below the aforementioned numbers if only one covariance function

was used.
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Figure 4.5: Realisations for May 8, 2017 - Iteration 20

Figure 4.6: Simulated precipitation iterations, March 6, 2007
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Figure 4.7: Simulation precipitation iterations, May 8, 2007

Figure 4.8: CDF for the date May 8th 2007
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Figure 4.9: CDF for the date March 6th 2007

4.3 Discharge Comparisons

The HBV simulated discharge was found to be about 15% to 20% higher than the

recorded discharge in station 411, figures 4.10 and 4.11 show the error ratio between

the discharges, it was calculated by dividing the the simulated discharge values by the

recorded discharge values. if the discharge values were perfectly similar, the ratio would

be equal to 1.

The figures were selected according to their Nash-Sutcliffe values, with the intention

of showing the ratios with low NS index value against high NS value, however, all the

results have approximately the same NS value, with iteration number 10 - realisation

number 05 being the least at 0.788 and iteration 16 realisation 07 with the NS value of

0.812. the ratios are very similar to each other with values reaching the being above the

recorded discharge, this is mostly due to the fact that conditional simulation methods

conserve the covariance function over a plain while IDWs or Kriging tend to the mean.

Figure 4.12 shows the Actual recorded discharge and the simulated discharge by the

HBV model, as well as the snow accumulation, on most days the simulated flow matches

or goes above the recorded discharge, however, on high peak days, the recorded flow
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goes well above the simulated flow, when compared to figure 4.13 these anomalies can

be attributed to snow accumulation and the fact that the HBV model’s snow simulation

is a little simplistic.

Figure 4.10: Mass balance for Iteration 10 realisation 05

Figure 4.11: Mass balance for Iteration 16 realisation 07
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Figure 4.12: Simulated and Actual discharge comparison

Figure 4.13: Simulated and Actual discharge comparison with snow
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Chapter 5

Conclusion

While there are certain pros for using the covariance function, mainly since it proved

valuable in estimating the precipitation, which leads to a relatively accurate estimation

of the peak, specially when compared to other interpolation methods such as IDW or

kriging which under estimate the precipitation.

There are many uncertainties in this model, as shown in chapter 4, uncertainties can arise

from several sources, including the random mixing itself, since even different realisations

of a single covariance function can be sporadic, adding to that the randomness of the

covariance function, and the fact that a different function can be generated from the

same dataset can lead to a different interpolation, however, the cumulative distribution

for high precipitation events shows that 90% of the realisations of all the covariance

functions for a single day all lean to the centre of the CDF, with some outliers on the

edges. On the other hand, the difference in values in simulated precipitation observed

in low precipitation events , is too high.

In conclusion, the results of this study demonstrate that using multiple covariance

functions with the same dataset can be helpful in estimating the discharge flow,

the simulated values matched and even exceeded the recorded values, since this

method doesn’t underestimate the precipitation as much as other interpolation methods,

however, the covariance function can cause a relatively high degree of error when used

with low precipitation dates, and using multiple covariance functions for a big dataset

requires more computation time and power.
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